Toward the rectilinear crossing number of Kn: new drawings, upper bounds, and asymptotics
نویسندگان
چکیده
Scheinerman and Wilf [SW94] assert that “an important open problem in the study of graph embeddings is to determine the rectilinear crossing number of the complete graph Kn.” A rectilinear drawing of Kn is an arrangement of n vertices in the plane, every pair of which is connected by an edge that is a line segment. We assume that no three vertices are collinear, and that no three edges intersect in a point unless that point is an endpoint of all three. The rectilinear crossing number of Kn is the fewest number of edge crossings attainable over all rectilinear drawings of Kn. For each n we construct a rectilinear drawing of Kn that has the fewest number of edge crossings and the best asymptotics known to date. Moreover, we give some alternative infinite families of drawings of Kn with good asymptotics. Finally, we mention some old and new open problems. keywords crossing number, rectilinear, complete graph
منابع مشابه
Geometric drawings of Kn with few crossings
We give a new upper bound for the rectilinear crossing number cr(n) of the complete geometric graph Kn. We prove that cr(n) 0.380559 (n 4 )+Θ(n3) by means of a new construction based on an iterative duplication strategy starting with a set having a certain structure of halving lines. © 2006 Elsevier Inc. All rights reserved.
متن کاملA Lower Bound for the Rectilinear Crossing Number
We give a new lower bound for the rectilinear crossing number cr(n) of the complete geometric graph Kn. We prove that cr(n) ≥ 14 ¥ n 2 ¦ ¥ n−1 2 ¦ ¥ n−2 2 ¦ ¥ n−3 2 ¦ and we extend the proof of the result to pseudolinear drawings of Kn.
متن کاملComputational search of small point sets with small rectilinear crossing number
Let cr(Kn) be the minimum number of crossings over all rectilinear drawings of the complete graph on n vertices on the plane. In this paper we prove that cr(Kn) < 0.380473 (
متن کاملOn the Biplanar Crossing Number of Kn
The crossing number cr(G) of a graph G is the minimum number of edge crossings over all drawings of G in the Euclidean plane. The k-planar crossing number crk(G) of G is min{cr(G1) + cr(G2) + . . .+ cr(Gk)}, where the minimum is taken over all possible decompositions of G into k subgraphs G1, G2, . . . , Gk. The problem of computing the crossing number of complete graphs, cr(Kn), exactly for sm...
متن کامل3-symmetric and 3-decomposable geometric drawings of Kn
Even the most super cial glance at the vast majority of crossing-minimal geometric drawings of Kn reveals two hard-to-miss features. First, all such drawings appear to be 3-fold symmetric (or simply 3-symmetric). And second, they all are 3-decomposable, that is, there is a triangle T enclosing the drawing, and a balanced partition A,B, C of the underlying set of points P , such that the orthogo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 262 شماره
صفحات -
تاریخ انتشار 2003